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FUNDAMENTAL THEOREMS ON THE GENERALIZED COUPLED
THERMOELASTICITY PROBLEM FOR ANISOTROPIC BODIES

Yu. M. Kolyano and E. P. Khomyakevich UDC 536.12:539.376

The equation of motion, Hooke's law, and the general heat-conduction equation
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for anisotropic bodies are used to derive the energy equation
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which expresses the generalized energy conservation principle.

Here )\%j are the thermal conductivity coefficients; t is the temperature; cy is the specific heat at con~
stant volume; .= 1 + 7,(8 /07); 1 is the heat flux relaxation time; r is the time; t; is the t?mperature of the
body in the unstrained state; Bi; = cijkjogy; akg are the coefficients of thermal expansion; ejj is the strain rate;
w is the density of internal heat sources; Xj are the inertial forces; vi = Gy; uj are the components of the dis-

placement vector; pi are the applied pressures on the surface S of the body Q; K=p/2 ( vividV is the kinetic
Q

energy; W = ——;— \1 Cijklekleijdv is the work of deformation; P = cy/2t, j t*dV is the thermal energy function;
g ; f

Q
Xy = %j‘ )\%t it idV + 1, 3 §tdV is the generalized dissipation function; s is the entropy; and p is the density.
[ 8 o s

The generalized conservation principle (1) differs from the classical dissipation function by a term con-
taining the acceleration of entropy growth of the system. :

The generalized energy theorem is used to prove the uniqueness of solution of the fundamental equations
for the generalized dynamic coupled thermoelasticity of anisotropic bodies in the presence of heat sources and
inertial forces.

The variation of the work of deformation, Hooke's law, the generalized Fourier equation, and the en-
tropy growth-rate relation for anisotropic bodies are used to prove a variational theorem on the generalized
coupled thermoelasticity of anisotropic bodies; this theorem states that the variation of the sum of the work
of deformation, heat flux, and generalized dissipation function is equal to the virtual work of the external
forces, inertial forces, and heating of the surface of the body,

A reciproeity theorem is proved for the generalized coupled thermoelasticity of anisotropic bodies.
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APPROXIMATE ANALYTICAL SOLUTION OF THE
NONSTEADY HEAT-CONDUCTION PROBLEM IN A
VARIABLE-TEMPERATURE MEDIUM

I. A. Sokolova UDC 536.2.023

For the determination of the temperature field t(r, z, 7) of a finite cylinder in a variable-temperature
medium the duration of the investigated thermal process is partitioned into a finite number of j-th intervals
of arbitrary duration A'rj, in which the temperature of the medium is approximated by a linear law.

A solution of the heat-conduction equation for the finite cylinder 0 < r =R, ~h sz =<h

ot (r, z, ©) —a arnz v iz ) | 0 (r, 2, 7
dt - ror ar? - 922

subject to the boundary conditions

i(r, 2, ’0) = {o, (2)
ER, 2, TV =1t(r, = h, T) =1Ly, ®)

in which tay is the time function tgy = ¢(7), is found by applying the Duhamel integral theorem to the solution
for a finite cylinder under constant-temperature conditions U(r, z, t) [1]:

T

1,2, Y —lo= ((Gy—1t) U (r, 2, 0)+ { U (r, 2, T—m) dn, @)
0

where 7 is the duration of the investigated thermal process.

When the boundary condition is approximated by a piecewise-linear time function, the expression for the
function ¢(r) in the i-th interval Arj is written in the form

Q1) —tfo=(@i_g—to) +b; (T—1;_y), (5)
by = (§i ~ i-1)/AT;. (6)
The computation of the integral in (4) is carried out by successive integration over the time intervals in which

the function tyy is considered to be linear. Combining the integration results for all intervals and performmg
a serles of appropriate transformations, we obtain

thz9—h _ fav=h g Fey 2 Pd; [Fol, @ (Fol,) — Foi ! @ (FolH)], (7)
ty (3 :

where Pdj = bihz/azt0 is the Predvoditelev number and Fotl_,l =a(r — 1i-) /h? is the Fourier number.

When the function tay is approximated by a step function, the required solution takes the form

ti{r, 2, ) —ty _

] .
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=1
where
d; = (§; — Pi-D/ko- 9)

To facilitate the practical application of the solutions obtained here a numerical calculation of the dimen-
sionless functions ®(Fop) and Q (Foy) is carried out. The computer-calculated vaiues of the functions for the
center of the finite cylinder are given in tables for Fourier numbers ranging from 0.0100 to 100 and for cyl-
inders with geometric dimensions k = h /R ranging from 0.1875 to 2.
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THERMAL FIELD OF A SPHERICAL SOURCE IN
A HETEROGENEQUS CONTINUUM

V. S. Kutlyarov UDC 536.12

The propagation of heat by molecular heat conduction in a two-component medium is investigated. The
components of the medium have different thermophysical characteristics, and heat transfer takes place be-
tween them. The heat-transfer process between the components is assumed to be quasisteady, so that the
transfer rate is proportional to the temperature difference between the components.

The problem of the temperaturé field outside a sphere having a certain radius with a given heat flux
to it is solved. Expressions are derived by an operational method for the temperatures of both components
when the latter have arbitrary parameters and the radius r of the spherical source is small.

Then the case of a medium in which m;k; > myk,, where m; and m, are the volume or surface fractions
occupied by the respective components and ky and k, are the thermal conductivities, is discussed for arbi-
trary r,. This case is important in connection with the obvious fact that the temperature difference of the
components increases with the difference in their thermal conductivities.

Next, the limiting case in which mk; > myk, but mypscy <« myp,c, is analyzed, where py and p, are the
densities and ¢y and ¢, are the specific heats of the respective components. Inasmuch as pc varies only slightly
for the majority of solids and liquids, the second stated condition is satisfied when my; <« m,, i.e., when the
portion of the medium occupied by the first component with the higher thermal conductivity is small.

Finally, an expression is obtained for the total net heat flux between the components per unit time
throughout the entire volume:

W) =4na [ (To(, =Ty 0, 0],

where Ty and T, are the temperatures of the components, r is the space coordinate, t is the time, and o is the
heat-transfer coefficient between the components. For the case of arbitrary parameters of the medium Wit) is
expressed in the form

' t
_ o (1 —eb) g a(l4+8)(@—86)
Vo= mypscy (1 + &) (S F@exp [ LA TY 157 ]dﬂ.

where ¢ = myk, /mykj; 6 = mypjcy/ myp,cy; and £(t) is the source strength,
Curves of Ty(r, t), To(r, t), and W(t) are plotted for selected values of the parameters.

It is important to note that allowance for the difference in the temperatures T and T, of the components
is essential for strongly nonsteady heat-transport processes for process times t £ 7y, where 7 = mypycy(l +
ed)a@ + &))" is the delay time constant for temperature redistribution processes in the heterogeneous con-
tinuum.
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INFLUENCE OF DEPARTURE FROM ONE-DIMENSIONAL
CONDITIONS IN DETERMINING THE THERMAL CONDUCTIVITY
OF LIQUIDS BY THE METHOD OF COAXIAL CYLINDERS

I. E. Veneraki, V. G. Lozovik, UDC 536.2.08
V. I. Deshko, and A. Ya. Kunkina

The method most often used in experimental studies of the thermal conductivity of liquids at high tem-
peratures is the steady-state method of coaxial cylinders [1]. This paper discusses the influence of the in-

herent departure from one-dimensionality in experimental realization of the method under conditions of non-
isothermicity of the lateral surfaces of the cylinders.

Our analysis is based on the solution of the problem of the steady-state temperature field of a three-
layer cylinder of finite length with an arbitrary distribution of the temperature lengthwise along the outer sur-
face and radially at the end surface as well as an arbitrary lengthwise distribution of the heat flux on the inner
surface of the cylinders.

The sought-after function must vanish at the ends of the cylinders. Then the method of separation of
variables (Fourier method) is used to find the radius-dependent coefficients of the function from the inhomo-
geneous modified Bessel equation of order zero [2], which becomes homogeneous when the temperature at the
ends is specified as a logarithmic function. The coefficients of the solution of the Bessel equation are found
from the boundary conditions and the contact conditions at the lateral surfaces with those conditions expanded
into a Fourier sine series.

The calculations are carried out on a BESM-4M computer, The temperature difference in the layer and,
with the aid of the formula for the method of coaxial cylinders, the thermal conductivity of the liquid are com-
puted for given geometric dimensions, thermal conductivities of the cylinders (including the liquid layer), and
boundary conditions. The error incurred in the results of the measurements due to inhomogeneity is deter-
mined by comparing the computed and specified values of the thermal conductivity.

The influence of such factors as nonisothermicity of the lateral surface, the inequality of thermal insula-
‘tion of the ends, the value of the heat flux at the inner surface, and the lengths, thicknesses, and thermal con-
ductivities of the cylinder materials on the error is investigated.

Nonisothermicity significantly increases the error of determination of the thermal conductivity. Axial
leakages of heat from the central zone in which the measurements are performed are possible not only through
the ends, but also through the peripheral parts of the lateral surface of the cylinders.

The presence of the inner cylinder between the axial heater and the liquid strongly affects the error. The
latter increases with the thicknesses and thermal conductivities of the cylinders.

For a nonisothermicity up to 2°C, which is deemed acceptable by many researchers, the error attains 2
or 3% for a length-to-diameter ratio of 8 to 10 and can attain 8 to 10% when that ratio is diminished to 5.

The results of the study make it possible to estimate the error due to nonisothermicity for specific ex-
perimental conditions attending the determination of the thermal conductivity of liquids.
LITERATURE CITED

1, V. A. Osipova and V. 1. Fedorov, Teplofiz. Vys. Temp., 3, No. 2, 228 (1965).
2. H. Bateman and A. Erdelyi, Higher Transcendental Functions (chapters on Bessel functions, parabolic
cylinder functions, and orthogonal polynomials), McGraw-Hill, New York (1853).

Dep. 299-76, December 29, 1975.
Original article submitted November 19, 1875,

616



THERMAL CONDUCTIVITY OF CRYOLITE MELTS

I. £. Veneraki, V. I. Deshko, ' UDC 536.22
and O. E. Khlebnikov

The thermal conductivity of melts of aluminum electrolyzer electrolyte and its main constituent, cryolite,
has previously been investigated by the steady-state method of coaxial cylinders [1]. To assess the influence
of radiative heat transfer the effective thermal conductivity of cryolite is determined for three thicknesses of
the melt layer (mm): 1.563, 2.06, 2.67 in the temperature range from 1000 to 1100°C, and the same is deter-
mined for the electrolyte in layers with thicknesses of 1.57 and 2.78 mm in the temperature range from 940
to 1040°C. The material of the cylinders is GMZ graphite, whose surface is packed with pyrographite to in-
crease its resistance to the aggressive melts. The maximum analytical error of determination of the thermal
conductivity is mainly attributable to the error of determination of the temperature difference in the layer
and to end losses and is equal to 10%.

The experimental results indicate an increase in the effective thermal conductivity with the layer thick-
ness, an effect that can be explained by radiative heat transfer. The true (conductive) thermal conductivity and
absorption coefficient of the melts are calculated in the gray-body approximation according to the equation
of Poltz [2] on the basis of the dependence of the effective thermal conductivity on the layer thickness. The
emissivity of the graphite and the refractive index of the melts are evaluated in accordance with {3, 4]. In the
investigated temperature range the true thermal conductivity of cryolite increases from 0.75 to 0.85 W/ m- °K,
while that of the electrolyte increases from 0.65 to 0.70 W/ m - °K. The absorption coefficient lies in the mter—
val 0.6 to 0.4 mm~! for cryolite and is about 0.6 mm™ for the electrolyte.

The spectral absorption is also determined experimentally by the double specimen method [5] in the
interval of wavelengths from 1 to 6 y; for this operation we have developed a windowless cell, in which a flat
melt layer is maintained by surface tension, along with a high-temperature oven attachment to fit the IKS-21
infrared spectrometer. It is found that the absorption coefficient can be assumed constant in the investigated
wavelength interval. The greater absorption of the molten industrial electrolyte is attributable to its inferior
purity and the presence of aluminum oxide in it.

The use of the resulting values of 0.3 mm™ for cryolite and0.4 mm™! for the electrolyte in calculating
the true thermal conductivity according to Poltz's equation yields results that are about 10 to 15% lower than
the cited values. This discrepancy can be explained by the approximative character of the analytical method,
errors in the data taken from the literature, and the lower transmissivity of the melt in the thermal conductiv-
ity determinations as a result of graphite particle inclusions and other impurities.

The results of the study show that for the investigation of the thermal conductivity and heat transfer in
cryolite melts it is necessary to take into account the influence of radiation. The effective thermal conduc-
tivity measured.for cryolite meits in a graphite cell by the nonsteady~-state method of coaxial eylinders turns
out to be more than double the true thermal conductivity.

LITERATURE CITED

V. A. Osipova and V. I. Fedorov, Teplofiz. Vys. Temp., 3, No. 2, 228 (1965).

H, Poltz, Intern. J. Heat Mass Transfer, 8, No. 4, 515 (1965).

L. N. ILatyev et al., Radiative Properties of Hard Materials [in Russian], Energiya, Moscow (1974).
J. Zarzycki and F. Naudin, Compt. Rend., 256, No. 6, 1282 (1963).

A. A. Men', O. A, Sergeev, and Z. S. Settarova, in: Heat Measurement Studies [in Russian], No, 129
(189) (1971), p. 280.

Dep. 298-76, December 29, 1975,
Original article submitted November 19, 1975.

(2 S B S

617



POWER EXPONENT FOR THE PRANDTL NUMBER UNDER
FREE-CONVECTION MELTING CONDITIONS

V. M. Stefanovskii UDC 536.421,1:536.252

Results are given from an experimental determination of the power exponent of Pr in the melting of ice,
benzene, hexadecane, pentadecane, and cyclohexane in a natural melt. The experiments are carried out for
two values of the Grashof number: Gr = 3- 106 and 1.88-10°, permitting maximum utilization of the established
data of other authors.

Inasmuch as the boundary conditions imply that the heat transfer of a porous body is proportional to the
first power of p/pg, the experimental results are processed to give Nu /(p/pg) as a function of Pr for Gr =
const. The power of the Prandtl number turns out to be close to 2, indicating the dominant influence of inertial
forces under free-convection melting conditions. This effect is attributed to gas liberation. which promotes
melting, because the frozen medium always contains gas bubbles.

An increase in the power exponent of the Prandtl number due to artificially generated turbulence has
been noted earlier in the examples of mass transfer associated with rectification and absorption [1] and heat
transfer in the presence of wire turbulence promoters in a single-phase medium with forced convection [2].

NOTATION

Nu, Nusselt number; Gr, Grashof number; Pr, Prandtl number; p, density of the melt at the average
boundary-layer temperature, kg /m®; pg, bulk density of the solid phase, kg /md,
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NUMERICAL SOLUTION OF THE PROBLEM OF TWISTED
GAS FLOW IN A PIPE WITH INJECTION IN THE INITIAL SECTION

V. D. Goryachev UDC 533.697.001.57:681.322.2

A finite -difference method is proposed for solving the equations of motion of twisted flow in a pipe in
whose initial section a secondary gas flow is injected at a higher temperature. Secondary flow injection is
realized by means of a swirling device in the form of a volute chamber with cascaded guide vanes.

The numerical solution is based on the substitution of average variables for the values of the axial and
radial flow velocity components in the convective terms of the Navier —~Stokes equations [1] with reliance on the
reffective viscosity " hypothesis [2].

The equations are solved in matrix form, and the matrix of coefficients has a relatively simple (three-
diagonal) form. This feature is an asset of the proposed numerical technigue over the one proposed in [3].

A special program for the M-222 digital computer has been written to implement the calculations by the
proposed method. The influence of flow twisting (swirling) on the mixing of gases in the swirler zone is in-
vestigated by computer modeling.

It is found that the main factor affecting the distributions of the temperature and velocity fields is the
tangential component of the secondary-flow injection rate at the exit from the guide-vane cascade. The value
of that velocity () is determined by the mass flow of gas through the swirler and the geometrical parameters
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Fig. 1. Influence of an increase
in the tangential injection velocity
on the distributions of the static
pressure and axial and tangential
velocities for ¥ = 0.75 at the
swirler exit. 1) 5=3;2)2; 3) 1;
4) 0.5.

of the cascade. Figure 1 shows the distributions of the axial and tangential flow velocities (u, w) and the static
pressure (p) when the ratio of the mass flow of gas through the swirler to the total mass flow through the sys-
tem is ¥ = 0.75. It is seen that an increase in g produces a dip in the axial-flow velocity profile. It is possible
for reverse currents to form in the event of large swirling. An increase in the swirling rate intensifies longi-
tudinal mixing and heat transfer between the secondary and primary gas flows. It is noted that an increase in
the ratio of the radial to the tangential component of the injection velocity shifts the tangential maximum to-
ward the pipe axis, inhibiting the inception of reverse currents of the gas,

A comparison of the modeling results with experimental data shows that the proposed finite -difference
method affords a satisfactory description of twisted flow in an initial section of the order of six pipe radii.
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ADVANCEMENT OF THE MOISTURE CHANGE-OF-STATE
FRONT IN THE FREEZING AND THAWING OF SOILS

G. N. Maksimov UDC 624.138.35+624,139.64

The solution of problems such as that named in the title is extremely relevant to the artificial thawing of
soils and construction in permafrost regions. Approximate solutions are investigated for the radial freezing of
a soil around a single icing column for t; > tg, with series expansion of the solutions, and one-dimensional
soil thawing problems are analyzed for the case tf < tf.

The proposed solution for the radial freezing process has the distinctive feature that the integral char-
acterizing the time variation of the gradient for the unfrozen zone

o (u—tg) 2 ( aty J1(0) Yo (@) — Jo (0) Yy ()
u u F ?S‘ exp (__) 1 {0 Y, @) olU) Ty dv (1)

! J30 + Y3 @
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Fig. 1. a) Duration of freezing of the ice —soil zone, 1) Ac-
cording to Eqs. (3) and (4); 2) according to Charnyi; 3) ac-
cording to Khakimov for a = 4; 4) the same for a = 5; 5) ac~
cording to Trupak's equation when t, = 0'for R, = 0.3751; 6)
the same when t¢ = 0 for R = 0.451;7) solution of the problem
of V. S. Luk'yanov's "hydrointegrator.” b) Section along the
frost curtain ¢the frozen zone is hatched, 7 is in days, and R
in meters).

is approximated in the interval Fo = 0.5 to 25 by the expression

2 [ S ' 5
-j_t—j‘f(Fo,v)~A,- = x 0.37 - ]/—Ti (2)
0 ] o? 0
whereupon the known boundary condition at the freezing front [1] is used and the expression integrated {o obtain
l'l
T= (3)
[ B ik I
z‘[ hf— YAk ]/ D g — il AB) | @)
90=1g (W —wy) yf - 0.5C¢ (tg— 1) + Cylty— ). 6

Figure la compares the result of calculations based on Egs. (3)-(5) with the well-known solutions Charnyi
[2] and Khakimov [3]. The result is close to the former. In the case of a row of icing columns walls of un-
frozen soil with a thickness 2x remain between the generatrices of the cylindrical ice —soil interfaces (Fig. 1b).
In the case of an infinite wall at which ty = 0 for Fo > 2 the temperature at its center to — 0. Consequently,
after R = 0.25! it is permissible to carry out the calculations according to equations based on the assumption
that t;= 0 [2, 4]. :

Tor one~dimensional thawing of frozen ground solutions are obtained for boundary conditions of the first
and third kind. In this case A; = 0 and By = 0.56. The solutions are identical to (3) and (4). For the boundary
conditions of the first kind z is determined from the equation

7z — B, Yy} z —0.5Ko=0. (6)

NOTATION

J, Y, Bessel functions; 7, time; af, ay, thermal diffusivities of the frozen and unfrozen soils; ty. tf,
in situ temperatures of the freezing (unfrozen) and thawing (frozen) soils; tr, soil freezing point; t, ty, tea,
temperatures of icer, wall surface, and center of the wall; Y = (tg —tf) /(tF —t); p, time-varying radius; R,
freezing radius; ry, radius of icer; k= R — ry) /R; q, heat of crystallization of water; W, soil moisture con-
tent by weight; w;, unfrozen-water content of soil; v bulk density of soil matrix; Cf, Cy, heat capacities
at constant volume of the frozen and unfrozen soils; ¢ = Cg/Cy; ¢ = Vag/ay; Ny = ayCys M = afCf; Fo, Fourier
number for the unfrozen zone; Ko, Kossovich number; in Eq. (3) [ =R for the radial problem, ! = H for the
one-dimensional problem; q,, variation of soil heat content at freezing front.
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EMISSIVITY OF GASES: SULFUR DIOXIDE AND
CARBON MONOXIDE

S. P. Detkov, A. N. Beregovoli, UDC 536.3:535.343
and V. N. Tokmakov

Equations are substantiated for the emissivity of two gases: sulfur dioxide and carbon monoxide. The
emphasis is on simplification of the equations. All calculations are carried out on a Promin! digital computer.
The basic input comprises experimental data on three parameters of the spectral bands. Consequently, the
nonisothermicity and nonisobaricity of the gas volumes can be taken into account by means of the three-param-
eter approximation.

The results are independent for sulfur dioxide. They do not have the corrections according to the data
of earlier researchers: Hottel; Chen and Tien; Balakrishnan and Edwards; A. N. Golitsyn. A critical examina~
tion of works published to date shows them to be insufficient and in some cases inconsistent. The present
method and results differ significantly from those published earlier. By contrast with the analysis of Chen and
Tien: 1) original expressions are used for the integral absorption in separate spectral bands; 2) a statistical
model of the spectrum is adopted; 3) the increase in the number of strong lines due to population growth of the
upper vibrational levels is taken into account; 4) the rotational structure parameter of the band w«; is consider-
ably decreased to conform more realistically with the influence of pressure on the absorption; 5) the effective
pressure equation is changed; 6) the integral intensity of the band w; + w; is increased from 9 to 33 em™.cm-
bar.

The emission spectrum of carbon monoxide is simple and has been thoroughly studied. This gas is the
object of tests and comparisons of analytical methods. In the present calculation theoretical innovations are
also tested: 1) 2 generalized statistical narrowband model is developed and applied; 2) the regular and statisti-
cal narrowband models have become better reconciled with increasing temperature; 3) the shifts of the subbands
of upper vibrational levels are taken into account indirectly. The integral absorption in the fundamental spec-
tral band is calculated from the experimental data of Burch and Williams, Abu-Romia, and Tien. The present
calculation is simpler than calculations of the Greif group and exhibit better agreement with the experimental
data.

The main advances of applied spectroscopy that are applicable to the problem are used in the study.
Consequently, the risk of extrapolating the experimental data on the temperature and optical thickness is
minimized, It nonetheless remains large. The existing experimental base is too limited to provide more re-
liable results, particularly with regard to sulfur dioxide.
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